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Motivation: MBL as a new universality class

• Classical systems: 
 
 
 
 

• Quantum systems:

Integrable
stable to weak perturbations

[Kolmogorov-Arnold-Moser theorem]

Ergodic 
ergodicity from chaos

Thermalizing 
ETH mechanism

E

<O
＞

Many-body localized
emergent integrability 

stable to weak perturbations



Thermalizing systems: ETH

• Thermalization: 
 

• Mechanism: 
Eigenstate Thermalization Hypothesis:  
property of eigenstates 
 
 

• Works in many cases 
Many open questions: timescale, other mechanisms?..

e-iHt

time

[Deutsch’91] [Srednicki’94] 
 [Rigol,Dunjko,Olshanii’08]

|λ>=

 
subsystem in thermal state  

thermal density matrix 
ρλ =e-H/T  



• MBL = localized phase with interactions

• Perturbative arguments for existence of MBL phase: 

• Numerical evidence for MBL:  

Many-body localized phase

[Basko,Aleiner,Altshuler’05][Gornyi,Polyakov,Mirlin’05]  

[Oganesyan,Huse’08] [Pal,Huse’10] [Znidaric,Prosen’08] 
[Monthus, Garel’10][Bardarson,Pollman,Moore’12]  
[MS, Papic, Abanin’13,’14] [Kjall et al’14] 

Properties of MBL phase?
Why thermalization breaks down?

Non-thermalizing MBL phase exists!

t
Ei

V

⚡



Universal Hamiltonian of MBL phase 

• If model is in MBL phase, rotate basis 
 

• New spins:  τi = U† Si U  are quasi-local; form complete set 
 
 
 
 

• Consequences: no transport, ETH breakdown,  
universal dynamics

Hij / exp(�|i� j|/⇠)
τiz τjz

SiSj

H =
X

i

~Si · ~Si+1 + hiS
z
i

hi
J⟂ Jz ⚡

[MS, Papic, Abanin, PRL’13]   
[Huse, Oganesyan, PRB’14]

 [Imbrie, arXiv:1403.7837]



Properties of MBL phase

Thermalizing phase MBL phase

disorder W

͠

Diffusion  
Entanglement light cone ??

• Transport:  
 
 

• Matrix elements: 
 

• Eigenstate properties:  
 
 



Dynamics in MBL phase

• Dephasing dynamics

• Phases randomize  
on distance x(t): 
 
 

• Explains logarithmic growth of entanglement

• Dynamics of local observables? 
[MS, Papic, Abanin, PRL’13]

tHij = tJ exp(�x/⇠) ⇠ 1

Hij / Je�|i�j|/⇠

distance

time

+ )( + )(+ )(+ )( + )(

+ )(+ )(+ )( + )(+ )(
x(t) = ⇠ log(Jt)



Local observables in a quench
e-iHt measure <Sx＞or	 <Sz＞⚡

⇢"#(t)

x(t) / ln(t)

|h⌧x

k

(t)i| /
1p
N(t)

=
1

(tJ)a
, a = R2⇠

0

��hÔ(t)i � hO(1)i
�� ⇠ 1

ta

• <τz(t)＞= const

• <τx(t)＞=             = [sum of N(t) = 2x(t) oscillating terms]

• Decay of oscillations of <τx(t)＞:

t

W=5

Sz

Sx

[MS, Papic, Abanin, PRB’14]

memory of  
initial state



Properties of MBL phase

• Transport:  
 
 

• Matrix elements 
 
 

Thermalizing phase MBL phase

disorder W

͠

Diffusion  
Entanglement lightcone

No transport 
Log-growth of entanglement

ETH ansatz, typicality ??



Structure of many-body wave function

• Single-particle localization: 

• Many-body wave function: 
 
 

• Alternative: “wave function” created by V 

J. Phys.: Condens. Matter 24 (2012) 405401 S D Pinski et al

Figure 2. Schematic representation of amplitude distributions |u
j

| obtained from exact diagonalization for system of length L

3 = 703 for
mass disorder 1m = 4 and frequencies (a) !2 = 3, (b) !2 = 4.5 and (c) !2 = 6. All sites with u(Er

j

)/L

3P
j

u(Er
j

) > 1 are shown as small
cubes and those with black edges have u(Er

j

)/L

3P
j

u(Er
j

) >
p

1000. The colour scale distinguishes between different slices of the system
along the axis into the page.

spring constant distributions with m̄ = k̄ = 1 and restrict
our investigation to the two cases of either pure mass or
pure spring constant disorder. Note that this choice sets
the units as well. The classical problem presented in (1),
particularly its stationary form (2), is very similar to the
tight-binding Schrödinger equation for the three-dimensional
Anderson model of localization [1] at energy E such that
(E � ✏

j

) 
j

= �P
l

t

jl

 
l

, where the l summation is over all
nearest neighbours and ✏

j

and t

jl

denote the onsite and hopping
energies, respectively [34]. For the mass disordered model
with fluctuating masses m

j

one can obtain the transformation
relations

E $ 6 � !2, ✏
j

(E) $ !2
m

j

= (6 � E)m
j

. (4)

As shown in [11], we can then reuse many of the results
for the Anderson model and infer the phase diagrams
of localization–delocalization transitions for the vibrational
mass disorder model. In figure 1(a), we show the estimated
mobility edges for the case of pure vibrational mass disorder
based on transforming the related estimates of the mobility
edges in the Anderson model [30, 35]. The phase diagrams for
the vibrational case are intriguing in many respects [11]. First
of all (i) there is clear evidence for delocalization–localization
transitions due to disorder. Next, (ii) the strong disorder limits
of |21m| > m̄, with the possibility of negative masses, or
|21k| > k̄, with similarly possible negative spring constants,
give rise to locally unstable regions (although globally stable)
corresponding to negative !2 solutions. Such modes are
known in liquids as unstable instantaneous normal modes and
are related to the relaxation dynamics of the liquids [36]. (iii)
The band edges can be computed similarly to the electronic
case and are given by !2 2 [0, 12(k̄ + 1k

2 )/(m̄ � 1m

2 )] for
1m,1k < 2. For the regions 1m,1k � 2, we have !2 2
[�1, 1] for pure mass disorder and !2 2 (12/m̄)[k̄�1k

2 , k̄+
1k

2 ] for pure spring disorder. (iv) The separation of extended
and localized states continues into the regions of1m,1k � 2

and so do the transitions and (v) there is a re-entrant behaviour
for ! > 0 and 1m (1k) < 2. These extraordinary mobility
edges and hence the phase diagrams have been confirmed by
direct high-precision numerics [11, 37].

3. Localization properties of eigenstates

3.1. Numerical diagonalization

Let us start our investigation of (3) by looking at some typical
eigenstates obtained by exact diagonalization. In particular,
we are using a combination of the iterative numerical
eigensystem packages ARPACK [38] and PARDISO [39]. We
find this combination to be most effective when dealing with
both the unsymmetric and the symmetric cases of pure mass
and spring disorder, respectively5.

In figure 2, we show eigenstates for the pure mass
disorder case corresponding to three eigenfrequencies which
lie in regions that according to the phase diagram (figure 1(a))
should be extended, close to the mobility edge and localized.
We see from figure 2 that these characterizations reflect the
apparent nature of these vibrational states. For figure 2(a), the
local amplitude of vibrations at each site is roughly of similar
magnitude throughout the system, whereas for figure 2(c),
the vibrations are confined to a small region in the cube.
Figure 2(b) displays the characteristic properties of a critical
wave function at the Anderson mobility edge [40].

For the pure spring disorder case as in figure 3, we
see that the vibrations for the three shown frequency values
may also be classified into extended, critical and localized
classes. This classification indeed agrees with the computed

5 We note that a similarity transformation M
1
2 KM� 1

2 could of course also
be used to symmetrize the mass disorder problem. However, since this would
necessitate complex matrices for1m > 2, we rather opt to employ the highly
optimized methods for unsymmetric real matrices of the ARPACK/PARDISO
combination.
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Problems: basis-dependent,  
not related to observables 

H|ni = En|ni  n(m) = hm|V |ni

V
Vnm



Matrix elements of local operators
local  

perturbation V

ETH ansatz  

[Srednicki’99]

hi|Sz|ji = e�S(E,R)/2f(Ei,Ej)Rij

Local integrals of motion  

Sz =
X

{↵}
⌧̂{↵}B̂{↵}[⌧z]

hi|Sz|ji ⇠ exp(�R/⇠)

R

narrow distribution: 
hi|Sz|ji ⇠ 1/

p
2R

broad distribution:
hi|Sz|ji ⇠ exp(�0R)

Thermalizing phase disorder W

͠

MBL phase



• Fractal dimensions from scaling of 
 
 
 
 
 
 
 
 
 
 
 
 

• “Frozen” fractal spectrum in MBL:  

Fractal analysis of matrix elements

MBL phase

Ergodic phase

Pq =
X

m

h|Vnm|2qi /
1

D⌧q
4

Figure 3. (Color online) Powers �
av

and �
typ

controlling the
decay of f2(!) and [f2(!)]

typ

saturate to one near W⇤ ⇡ 2.
For larger values of the disorder, �

av

decreases again, while
the power �

typ

controlling the typical behavior grows above
one.

[f2(!)]
typ

= exp(hln f2(!)i), where the brackets denote
averaging over disorder and eigenstates.

From Fig. 3 we observe that for disorders W < W⇤
both powers coincide, and are smaller than one, �

typ

⇡
� < 1. This is consistent with the subdi↵usion observed
numerically in the studies of di↵erent correlation func-
tions in the time domain,22–26 also Refs. 27 and 47 di-
rectly addressed conductivity in the frequency domain.
For W � W⇤, the power � saturates to one for some
range of the disorder values. This corresponds to f2(!)
decaying as 1/!, and suggests a logarithmic decay of cor-
relation functions in time. Such behavior again is consis-
tent with the system entering the critical region for the
accessible system sizes.

Note, that for disorder W > W⇤ power � and �
typ

ex-
tracted from average and log-averaged spectral functions
do not agree anymore. This signals that the function
f2(!) is no longer smooth, and is consistent with the
onset of strong multifractality in the critical fan, which
we address below. The dominant contribution to f2(!)
now comes from rare resonances that give matrix ele-
ments of order one.47 In contrast, the log-averaged spec-
tral function is dominated by most probable matrix el-
ements, and [f2(!)]typ exponentially decreases with L,
consistent with the criterion for the MBLT.43

Multifractal analysis of the matrix elements.— Finally,
we consider an interpretation of the matrix elements as
the wave function amplitudes after applying a local per-
turbation. We locally perturb our system with an oper-
ator Ô starting from an eigenstate |↵i. Then, the prob-
ability to find the system in the eigenstate |�i is given
by |O

↵�

|2 = | 
↵

(�)|2, which can be interpreted as the

squared wave function amplitude. When the operator Ô
squares to the identity, as is the case for Ô = �z

i

, the
wave function is normalized,

P
�

| 
↵

(�)|2 = 1.
Although the fractality was recently argued to be a

generic property of many-body ground states,48 fractal

Figure 4. (Color online) The spectrum of exponents ⌧
q

governing the scaling of participation ratios P
q

. The spectrum
evolves from being very close to that of a metal (red line,
W = 0.5) to the “frozen” fractal spectrum deep in the MBL
phase (W = 8, black line). Inset shows ⌧

q

near q  1.

properties strongly depend on the choice of the basis. In
particular, previous works49,50 studied the decomposition
of excited many-body eigenstates in the standard basis of
product states. Here, in contrast, we work in the eigen-
basis of the unperturbed Hamiltonian, and relate fractal
dimensions in this basis to the onset of criticality and
localization.
It is natural to expect that the statistics of this wave

function would provide useful information about the lo-
calization/ergodicity properties of the system. In order
to understand the fractal properties of matrix elements,
we study participation ratios with general index q, P

q

, of
the wave function  

↵

(�). We extract the scaling dimen-
sion ⌧

q

, defined as

P
q

=
X

�

h| (�)|2qi / 1

D⌧q
, (6)

where D is the Hilbert space dimension, and the brack-
ets denote averaging over disorder and eigenstates. We
obtain ⌧

q

using ED data for systems up to L = 16 spins,
since SI data do not provide a complete set of matrix ele-
ments. While fractality is often described using the frac-
tal spectrum f(↵) related to ⌧

q

via the Legendre trans-
form,51 we find that ⌧

q

su↵ers from fewer numerical is-
sues, and concentrate on its studies below.
Fig. 4 displays ⌧

q

for matrix elements of O = �z

i

. All
curves pass through points ⌧0 = �1 and ⌧1 = 0, which
are fixed by the dimension of Hilbert space and the nor-
malization of the wave function. If the distribution of
matrix elements is very narrow, all | (�)|2 / 1/D, and
one expects ⌧

q

= q � 1, as illustrated by the diagonal
dashed line in Fig. 4. At weak disorder W = 0.5, ⌧

q

is
indeed close to the asymptotic expected for a metal.
Upon increasing disorder, the spectrum ⌧

q

stays close
to q � 1 for q < 1 but begins to deviate for q > 1.
The apparent in Fig. 4 saturation of ⌧

q

to a constant for

⌧q

q

⌧q = q � 1

⌧q>qc = 0

hlnVnmi / �L



• Spectral function  

• Related to dynamics: 

• Thermalizing phase:  
 
 
 
 
 
 
 
 
 

Energy structure of matrix elements 

f2(!) = eS(E)h|Vnm|2�(! � (Em � En))i

h↵|V (t)V (0)|↵ic ⇡
Z 1

�1
d! e�i!tf2(!)

ln f2(!)

ln!
ETh

1

!� ETh /
1

L1/(1��)

h↵|V (t)V (0)|↵ic /
1

t1��

 [arXiv:1610.02389]

more details:



• MBL phase: Thouless energy < level spacing

• Breakdown of typicality:  

Numerical results for spectral function:

Thermalizing phase disorder W

͠

MBL phase

loghVnmi 6= hlogVnmi

3

(a)

Figure 1. (Color online) f2(!) is plotted as a function of !/�, which probes the behavior at very low energies. (a) For weak
disorder W = 1, the power-law decay of f2(!) is followed by the saturation at energies below E

Th

� �. Constant shift on
the curves towards right with increasing system size is consistent with E

Th

scaling as a power-law in L. (b) For intermediate
disorder W = 2, the plateau fails to fully develop even for L = 20 spins, which signals that E

Th

⇠ �. (c) In the MBL phase
for W = 5, f2(!) decays as a power-law for energies even below the many-body level spacing.

for energies ! < ETh with ETh = 1/t⇤ / L�1/� , as is in-
deed the case in Fig. 1(a). The featureless form of f2(!)
for ! < ETh is natural since for times longer than t⇤, a
local excitation explores the full system size, and dimen-
sionality is e↵ectively lost – the system is described by
the random matrix theory.

Notably, ETh rapidly decreases as we increase the dis-
order strength. In particular, already for W = 2, still
far from the MBLT at W

c

, Fig. 1(b) illustrates the ab-
sence of a fully developed plateau for the largest studied
system sizes. The slight upward curvature of f2(!) for
! < � persists through the MBLT up to disorder W . 4.
At even stronger disorders, e.g., W = 5 in Fig. 1(c), the
part of f2(!) with upward curvature entirely disappears,
and f2(!) retains a power-law shape down to the ener-
gies below level spacing. Below we explore the variation
of ETh and power � across the MBLT.

Thouless energy.—In order to systematically study the
behavior of ETh, we fit the corresponding curves for

Figure 2. (Color online) Growth of E
Th

/� with L slows
down as the value of d the isorder is increased towards the
MBLT. Already for W = 2.5 we have E

Th

< � even for
L = 20. For larger disorders E

Th

is too small to be reliably
determined.

f2(!) with the function

f2(!) =
f2(0)

1 + (!/ETh)�
. (5)

Fig. 2 shows the Thouless energy extracted from such
fits. Dashed line in Fig. 2 corresponds to the di↵usive
(� = 1/2) scaling of ETh / 1/L2, and is roughly consis-
tent with the data for weak disorder W = 1. For disorder
W � W⇤, where W⇤ ⇡ 2, the growth of ETh/� becomes
increasingly slower. From Fig. 2 it is evident ETh remains
below the level spacing � for W > W⇤ and all available
system sizes. While one cannot rule out the power-law
behavior ETh / L�1/� with very small �, it is more nat-
ural to interpret the data as exponential dependence of
ETh with L, ETh / e�L with  < ln 2.
We interpret the small value ETh  �, and expo-

nential scaling of ETh as evidence for our system enter-
ing the critical region near the MBLT. Indeed, recent
phenomenological RG studies20,21 suggested a scaling
log ⌧ ⇠ L in the critical region near the MBLT; logarith-
mic growth of particle number fluctuations for W < W

c

was also demonstrated numerically.43 If there exists a
correlation length ⇠(W ) that depends on disorder and di-
verges at the MBLT for W = W

c

, then even at disorder
W < W

c

small systems of length L  ⇠(W ) may qualita-
tively behave as if they were at the MBLT transition, so
one has to study systems of size L > ⇠(W ) to see the de-
localized behavior. In this scenario, from Fig. 2 it follows
that correlation length ⇠(W⇤) � 20 becomes larger than
our largest system size at disorder value W⇤ ⇡ 2.46 Below
we present additional evidence for critical behavior from
power � governing the decay of f2(!).
Power � across the MBLT.— The power � extracted

from fitting f2(!) to Eq. (5) for disorder W � 1.75 is
shown in Fig. 3 (red lines). For smaller values of W ,
Eq. (5) gave satisfactory fits at small ! but failed to
capture the abrupt onset of the power-law decay. Thus
for W  1.5 we extracted the power �

av

from fitting
the central part of the “shoulder” [see Fig. 1(a)] to the
power law. Blue curves in Fig. 3 refer to �

typ

defined
as the power-law governing the decay of log-averaged

!/�

3

(c)

Figure 1. (Color online) f2(!) is plotted as a function of !/�, which probes the behavior at very low energies. (a) For weak
disorder W = 1, the power-law decay of f2(!) is followed by the saturation at energies below E

Th

� �. Constant shift on
the curves towards right with increasing system size is consistent with E

Th

scaling as a power-law in L. (b) For intermediate
disorder W = 2, the plateau fails to fully develop even for L = 20 spins, which signals that E

Th

⇠ �. (c) In the MBL phase
for W = 5, f2(!) decays as a power-law for energies even below the many-body level spacing.

for energies ! < ETh with ETh = 1/t⇤ / L�1/� , as is in-
deed the case in Fig. 1(a). The featureless form of f2(!)
for ! < ETh is natural since for times longer than t⇤, a
local excitation explores the full system size, and dimen-
sionality is e↵ectively lost – the system is described by
the random matrix theory.

Notably, ETh rapidly decreases as we increase the dis-
order strength. In particular, already for W = 2, still
far from the MBLT at W

c

, Fig. 1(b) illustrates the ab-
sence of a fully developed plateau for the largest studied
system sizes. The slight upward curvature of f2(!) for
! < � persists through the MBLT up to disorder W . 4.
At even stronger disorders, e.g., W = 5 in Fig. 1(c), the
part of f2(!) with upward curvature entirely disappears,
and f2(!) retains a power-law shape down to the ener-
gies below level spacing. Below we explore the variation
of ETh and power � across the MBLT.

Thouless energy.—In order to systematically study the
behavior of ETh, we fit the corresponding curves for

Figure 2. (Color online) Growth of E
Th

/� with L slows
down as the value of d the isorder is increased towards the
MBLT. Already for W = 2.5 we have E

Th

< � even for
L = 20. For larger disorders E

Th

is too small to be reliably
determined.

f2(!) with the function

f2(!) =
f2(0)

1 + (!/ETh)�
. (5)

Fig. 2 shows the Thouless energy extracted from such
fits. Dashed line in Fig. 2 corresponds to the di↵usive
(� = 1/2) scaling of ETh / 1/L2, and is roughly consis-
tent with the data for weak disorder W = 1. For disorder
W � W⇤, where W⇤ ⇡ 2, the growth of ETh/� becomes
increasingly slower. From Fig. 2 it is evident ETh remains
below the level spacing � for W > W⇤ and all available
system sizes. While one cannot rule out the power-law
behavior ETh / L�1/� with very small �, it is more nat-
ural to interpret the data as exponential dependence of
ETh with L, ETh / e�L with  < ln 2.
We interpret the small value ETh  �, and expo-

nential scaling of ETh as evidence for our system enter-
ing the critical region near the MBLT. Indeed, recent
phenomenological RG studies20,21 suggested a scaling
log ⌧ ⇠ L in the critical region near the MBLT; logarith-
mic growth of particle number fluctuations for W < W

c

was also demonstrated numerically.43 If there exists a
correlation length ⇠(W ) that depends on disorder and di-
verges at the MBLT for W = W

c

, then even at disorder
W < W

c

small systems of length L  ⇠(W ) may qualita-
tively behave as if they were at the MBLT transition, so
one has to study systems of size L > ⇠(W ) to see the de-
localized behavior. In this scenario, from Fig. 2 it follows
that correlation length ⇠(W⇤) � 20 becomes larger than
our largest system size at disorder value W⇤ ⇡ 2.46 Below
we present additional evidence for critical behavior from
power � governing the decay of f2(!).
Power � across the MBLT.— The power � extracted

from fitting f2(!) to Eq. (5) for disorder W � 1.75 is
shown in Fig. 3 (red lines). For smaller values of W ,
Eq. (5) gave satisfactory fits at small ! but failed to
capture the abrupt onset of the power-law decay. Thus
for W  1.5 we extracted the power �
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from fitting
the central part of the “shoulder” [see Fig. 1(a)] to the
power law. Blue curves in Fig. 3 refer to �
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as the power-law governing the decay of log-averaged
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Properties of MBL phase

• Transport:  
 

• Matrix elements: 
 

• Eigenstate properties:  
 
 

Thermalizing phase MBL phase

disorder W

͠

Diffusion  
Entanglement lightcone

No transport 
Log-growth of entanglement

ETH ansatz, typicality broad distribution
strong fractality

volume-law entanglement
“flat” entanglement spectrum 

??



• Gapped ground states: area-law 

• Excited eigenstates: volume-law  
 
 

• MBL: area-law entanglement 
Q: Difference with gapped ground states?

• Entanglement spectrum {𝜆i} 

• “Flat” in ergodic states: 

Beyond entanglement

Sent(L) ~ L  in 1d  

E

Ground state

Sent(L) ~ const  in 1d  

S
ent

= �
P

i �i log�i

[Marchenko&Pastur'67] 
 [Yang,Chamon,Hamma&Muciolo’15]

ln�k



• Quantum Hall wave function:  
     
 

• MBL phase: conserved quantities label ES 
 
 
 
 

• Coefficients decay as

Entanglement spectrum: probes boundary

ky

kx

C"#""|"#i|""i+
r=1

e�|""""i =C""""|""i|""ic0

+    …..C####|##i|##i+
r=4

e�4

e�2C"##"|"#i|#"i +…+
r=2

|C"..."##"""#| {z }
r

"..."| / e�r

[Li & Haldane]

 ky to organize ES



Power-law entanglement spectrum

• Hierarchical structure of  
 

• Orthogonalize perturbatively 
 
 
 

• Power-law entanglement spectrum 

⇢L =
PL

r=0 | (r)ih (r)|

�(r) / e�4r

h (r)| (r)i / e�2r but non-orthogonal

2rmultiplicity is 

�(0)

�(1)

�(1)

�(2)

�(2)

�(2)

�(2)

�k / 1
k� � ⇡ 4

ln 2



Numerics for XXZ spin chain

• Numerical studies for XXZ spin chain, J⟂=Jz =1  
 

• Power law entanglement spectrum: 

H =
X

i

(hiS
z
i + J?S

+
i S�

i+1 + h.c.)

+
X

i

JzS
z
i S

z
i+1

�k / 1
k�

disorder W = 5

 [arXiv:1605.05737]

 
more details in:



Estimates for the bond dimension

�

disorder W = 5

                      also: [Yu et al arXiv:1509.01244] [Lim&Sheng arXiv:1510.08145] 
                [Pollmann et al arXiv:1509.00483] [Kennes&Karrasch arXiv:1511.02205] 

 more details:  
[arXiv:1605.05737]

/ 1/���1• Large 𝛾 → MPS error                        can be small 

• Implementation of DMRG for highly excited states:



Properties of MBL phase

• Transport:  
 

• Matrix elements: 
 

• Eigenstate properties:  
 
 

Thermalizing phase MBL phase

disorder W

͠

Diffusion  
Entanglement lightcone

No transport 
Log-growth of entanglement

ETH ansatz, typicality broad distribution
strong fractality

volume-law entanglement
“flat” entanglement spectrum 

area-law entanglement
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